Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.043
Filtrar
1.
Nanotheranostics ; 8(3): 330-343, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577323

RESUMO

Atomic Force Microscopy (AFM) is a very flexible method that can create topographical images from a range of materials and image surfaces. Significantly, AFM has emerged as an invaluable tool for dissecting the morphology and biochemical aspects of body cells and tissues. The high-resolution imaging capabilities of AFM enable researchers to discern alterations in cell morphology and understand the underlying mechanisms of diseases. It contributes to understanding disease etiology and progression. In the context of this review, our focus will be directed towards elucidating the pivotal role of AFM in analysis of blood related disorders. Through detailed comparisons with normal cells, we delve into the alterations in size, shape, and surface characteristics induced by conditions such as cancer, diabetes, anaemia, and infections caused by pathogens. In essence, various work described in this article highlights to bridge the gap between traditional microscopy and in-depth analysis of blood-related pathologies, which in turn offers valuable perspectives for both research and clinical applications in the field.


Assuntos
Doenças Hematológicas , Microscopia de Força Atômica , Microscopia de Força Atômica/métodos , Doenças Hematológicas/diagnóstico por imagem , Humanos
2.
Environ Sci Technol ; 58(15): 6763-6771, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38572777

RESUMO

Understanding interfacial interactions of graphene oxide (GO) is important to evaluate its colloidal behavior and environmental fate. Single-layer GO is the fundamental unit of GO colloids, and its interfacial aqueous layers critically dictate these interfacial interactions. However, conventional techniques like X-ray diffraction are limited to multilayer systems and are inapplicable to single-layer GO. Therefore, our study employed atomic force microscopy to precisely observe the in situ dynamic behaviors of interfacial aqueous layers on single-layer GO. The interfacial aqueous layer height was detected at the subnanometer level. In real-time monitoring, the single-layer height increased from 1.17 to 1.70 nm within 3 h immersion. This sluggish process is different from the rapid equilibration of multilayer GO in previous studies, underscoring a gradual transition in hydration kinetics. Ion strength exhibited negligible influence on the single-layer height, suggesting a resilient response of the interfacial aqueous layer to ion-related perturbations due to intricate ion interactions and electrical double-layer compression. Humic acid led to a substantial increase in the interfacial aqueous layers, improving the colloidal stability of GO and augmenting its potential for migration. These findings hold considerable significance regarding the environmental behaviors of the GO interfacial aqueous layer in ion- and organic-rich water and soil.


Assuntos
Grafite , Água , Microscopia de Força Atômica , Coloides
3.
Biochem Soc Trans ; 52(2): 761-771, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38600027

RESUMO

Recent developments in atomic force microscopy (AFM) image analysis have made three-dimensional (3D) structural reconstruction of individual particles observed on 2D AFM height images a reality. Here, we review the emerging contact point reconstruction AFM (CPR-AFM) methodology and its application in 3D reconstruction of individual helical amyloid filaments in the context of the challenges presented by the structural analysis of highly polymorphous and heterogeneous amyloid protein structures. How individual particle-level structural analysis can contribute to resolving the amyloid polymorph structure-function relationships, the environmental triggers leading to protein misfolding and aggregation into amyloid species, the influences by the conditions or minor fluctuations in the initial monomeric protein structure on the speed of amyloid fibril formation, and the extent of the different types of amyloid species that can be formed, are discussed. Future perspectives in the capabilities of AFM-based 3D structural reconstruction methodology exploiting synergies with other recent AFM technology advances are also discussed to highlight the potential of AFM as an emergent general, accessible and multimodal structural biology tool for the analysis of individual biomolecules.


Assuntos
Amiloide , Imageamento Tridimensional , Microscopia de Força Atômica , Microscopia de Força Atômica/métodos , Imageamento Tridimensional/métodos , Humanos , Amiloide/química , Amiloide/metabolismo , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/metabolismo , Conformação Proteica , Dobramento de Proteína
4.
Methods Mol Biol ; 2788: 81-95, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656510

RESUMO

Atomic force microscopy (AFM) has broken boundaries in the characterization of the supramolecular architecture of cell wall assemblies and single cell wall polysaccharides at the nanoscale level. Moreover, AFM provides an opportunity to evaluate the mechanical properties of cell wall material which is not possible with any other method. However, in the case of plant tissue, the critical step is a smart sample preparation that should not affect the polysaccharide structure or assembly and on the other hand should consider device limitations, especially scanner ranges. In this chapter, the protocols from the sample preparation, including isolation of cell wall material and extraction of cell wall polysaccharide fractions, through AFM imaging of polysaccharide assemblies and single molecules until an image analysis to obtain quantitative data characterizing the biopolymers are presented.


Assuntos
Parede Celular , Microscopia de Força Atômica , Microscopia de Força Atômica/métodos , Parede Celular/ultraestrutura , Parede Celular/química , Polissacarídeos/química , Polissacarídeos/análise
5.
Sci Adv ; 10(17): eadn7033, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38657061

RESUMO

HIV-1 cores, which contain the viral genome and replication machinery, must disassemble (uncoat) during viral replication. However, the viral and host factors that trigger uncoating remain unidentified. Recent studies show that infectious cores enter the nucleus and uncoat near the site of integration. Here, we show that efficient uncoating of nuclear cores requires synthesis of a double-stranded DNA (dsDNA) genome >3.5 kb and that the efficiency of uncoating correlates with genome size. Core disruption by capsid inhibitors releases viral DNA, some of which integrates. However, most of the viral DNA is degraded, indicating that the intact core safeguards viral DNA. Atomic force microscopy and core content estimation reveal that synthesis of full-length genomic dsDNA induces substantial internal strain on the core to promote uncoating. We conclude that HIV-1 cores protect viral DNA from degradation by host factors and that synthesis of long double-stranded reverse transcription products is required to trigger efficient HIV-1 uncoating.


Assuntos
DNA Viral , HIV-1 , Transcrição Reversa , Desenvelopamento do Vírus , HIV-1/fisiologia , HIV-1/efeitos dos fármacos , HIV-1/genética , Humanos , DNA Viral/genética , DNA Viral/metabolismo , Replicação Viral/efeitos dos fármacos , Genoma Viral , Microscopia de Força Atômica , Capsídeo/metabolismo
6.
ACS Nano ; 18(16): 10738-10757, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38609349

RESUMO

Biomolecular condensates play important roles in a wide array of fundamental biological processes, such as cellular compartmentalization, cellular regulation, and other biochemical reactions. Since their discovery and first observations, an extensive and expansive library of tools has been developed to investigate various aspects and properties, encompassing structural and compositional information, material properties, and their evolution throughout the life cycle from formation to eventual dissolution. This Review presents an overview of the expanded set of tools and methods that researchers use to probe the properties of biomolecular condensates across diverse scales of length, concentration, stiffness, and time. In particular, we review recent years' exciting development of label-free techniques and methodologies. We broadly organize the set of tools into 3 categories: (1) imaging-based techniques, such as transmitted-light microscopy (TLM) and Brillouin microscopy (BM), (2) force spectroscopy techniques, such as atomic force microscopy (AFM) and the optical tweezer (OT), and (3) microfluidic platforms and emerging technologies. We point out the tools' key opportunities, challenges, and future perspectives and analyze their correlative potential as well as compatibility with other techniques. Additionally, we review emerging techniques, namely, differential dynamic microscopy (DDM) and interferometric scattering microscopy (iSCAT), that have huge potential for future applications in studying biomolecular condensates. Finally, we highlight how some of these techniques can be translated for diagnostics and therapy purposes. We hope this Review serves as a useful guide for new researchers in this field and aids in advancing the development of new biophysical tools to study biomolecular condensates.


Assuntos
Condensados Biomoleculares , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , Microscopia de Força Atômica , Pinças Ópticas , Humanos , Microscopia/métodos
7.
Nanoscale ; 16(16): 8132-8142, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38568015

RESUMO

Tip-enhanced Raman spectroscopy (TERS) is an advanced technique to perform local chemical analysis of the surface of a sample through the improvement of the sensitivity and the spatial resolution of Raman spectroscopy by plasmonic enhancement of the electromagnetic signal in correspondence with the nanometer-sized tip of an atomic force microscope (AFM). In this work, TERS is demonstrated to represent an innovative and powerful approach for studying extracellular vesicles, in particular bovine milk-derived extracellular vesicles (mEVs), which are nanostructures with considerable potential in drug delivery and therapeutic applications. Raman spectroscopy has been used to analyze mEVs at the micrometric and sub-micrometric scales to obtain a detailed Raman spectrum in order to identify the 'signature' of mEVs in terms of their characteristic molecular vibrations and, therefore, their chemical compositions. With the ability to improve lateral resolution, TERS has been used to study individual mEVs, demonstrating the possibility of investigating a single mEV selected on the surface of the sample and, moreover, analyzing specific locations on the selected mEV with nanometer lateral resolution. TERS potentially allows one to reveal local differences in the composition of mEVs providing new insights into their structure. Also, thanks to the intrinsic properties of TERS to acquire the signal from only the first few nanometers of the surface, chemical investigation of the lipid membrane in correspondence with the various locations of the selected mEV could be performed by analyzing the peaks of the Raman shift in the relevant range of the spectrum (2800-3000 cm-1). Despite being limited to mEVs, this work demonstrates the potential of TERS in the analysis of extracellular vesicles.


Assuntos
Vesículas Extracelulares , Microscopia de Força Atômica , Leite , Análise Espectral Raman , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Animais , Bovinos , Leite/química
8.
J Vis Exp ; (205)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38587397

RESUMO

High-speed atomic force microscopy (HS-AFM) is a popular molecular imaging technique for visualizing single-molecule biological processes in real-time due to its ability to image under physiological conditions in liquid environments. The photothermal off-resonance tapping (PORT) mode uses a drive laser to oscillate the cantilever in a controlled manner. This direct cantilever actuation is effective in the MHz range. Combined with operating the feedback loop on the time domain force curve rather than the resonant amplitude, PORT enables high-speed imaging at up to ten frames per second with direct control over tip-sample forces. PORT has been shown to enable imaging of delicate assembly dynamics and precise monitoring of patterns formed by biomolecules. Thus far, the technique has been used for a variety of dynamic in vitro studies, including the DNA 3-point-star motif assembly patterns shown in this work. Through a series of experiments, this protocol systematically identifies the optimal imaging parameter settings and ultimate limits of the HS-PORT AFM imaging system and how they affect biomolecular assembly processes. Additionally, it investigates potential undesired thermal effects induced by the drive laser on the sample and surrounding liquid, particularly when the scanning is limited to small areas. These findings provide valuable insights that will drive the advancement of PORT mode's application in studying complex biological systems.


Assuntos
Fenômenos Mecânicos , Nanotecnologia , Microscopia de Força Atômica/métodos , Imagem Molecular , DNA
9.
J Mater Chem B ; 12(13): 3249-3261, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38466580

RESUMO

Over the past few decades, the critical role played by cellular contractility associated mechanotransduction in the regulation of cell functions has been revealed. In this case, numerous biomaterials have been chemically or structurally designed to manipulate cell behaviors through the regulation of cellular contractility. In particular, adhesive proteins including fibronectin, poly-L-lysine and collagen type I have been widely applied in various biomaterials to improve cell adhesion. Therefore, clarifying the effects of adhesive proteins on cellular contractility has been valuable for the development of biomaterial design. In this study, reference-free traction force microscopy with a well-organized microdot array was designed and prepared to investigate the relationship between adhesive proteins, cellular contractility, and mechanotransduction. The results showed that fibronectin and collagen type I were able to promote the assembly of focal adhesions and further enhance cellular contraction and YAP activity. In contrast, although poly-L-lysine supported cell spreading and elongation, it was inefficient at inducing cell contractility and activating YAP. Additionally, compared with cellular morphogenesis, cellular contraction was essential for YAP activation.


Assuntos
Fibronectinas , Mecanotransdução Celular , Fibronectinas/metabolismo , Mecanotransdução Celular/fisiologia , Microscopia de Força Atômica , Colágeno Tipo I , Polilisina , Tração , Adesão Celular , Materiais Biocompatíveis
10.
Viruses ; 16(3)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38543792

RESUMO

The structural study of plant viruses is of great importance to reduce the damage caused by these agricultural pathogens and to support their biotechnological applications. Nowadays, X-ray crystallography, NMR spectroscopy and cryo-electron microscopy are well accepted methods to obtain the 3D protein structure with the best resolution. However, for large and complex supramolecular structures such as plant viruses, especially flexible filamentous ones, there are a number of technical limitations to resolving their native structure in solution. In addition, they do not allow us to obtain structural information about dynamics and interactions with physiological partners. For these purposes, small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM) are well established. In this review, we have outlined the main principles of these two methods and demonstrated their advantages for structural studies of plant viruses of different shapes with relatively high spatial resolution. In addition, we have demonstrated the ability of AFM to obtain information on the mechanical properties of the virus particles that are inaccessible to other experimental techniques. We believe that these under-appreciated approaches, especially when used in combination, are valuable tools for studying a wide variety of helical plant viruses, many of which cannot be resolved by classical structural methods.


Assuntos
Vírus de Plantas , Difração de Raios X , Microscopia Crioeletrônica , Espalhamento a Baixo Ângulo , Microscopia de Força Atômica/métodos , Raios X , Cristalografia por Raios X
11.
ACS Appl Mater Interfaces ; 16(13): 16962-16972, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38520330

RESUMO

Typical methods for stable immobilization of proteins often involve time-consuming surface modification of silicon-based materials to enable specific binding, while the nonspecific adsorption method is faster but usually unstable. Herein, we fused a silica-binding protein, Si-tag, to target proteins so that the target proteins could attach directly to silica substrates in a single step, markedly streamlining the immobilization process. The adhesion force between the Si-tag and glass substrates was determined to be approximately 400-600 pN at the single-molecule level by atomic force microscopy, which is greater than the unfolding force of most proteins. The adhesion force of the Si-tag exhibits a slight increase when pulled from the C-terminus compared to that from the N-terminus. Furthermore, the Si-tag's adhesion force on a glass surface is marginally higher than that on a silicon nitride probe. The binding properties of the Si-tag are not obviously affected by environmental factors, including pH, salt concentration, and temperature. In addition, the macroscopic adhesion force between the Si-tag-coated hydrogel and glass substrates was ∼40 times higher than that of unmodified hydrogels. Therefore, the Si-tag, with its strong silica substrate binding ability, provides a useful tool as an excellent fusion tag for the rapid and mechanically robust immobilization of proteins on silica and for the surface coating of silica-binding materials.


Assuntos
Proteínas de Transporte , Dióxido de Silício , Dióxido de Silício/química , Análise Espectral , Microscopia de Força Atômica , Propriedades de Superfície
12.
Langmuir ; 40(14): 7733-7746, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38538620

RESUMO

The mechanism of ethanol-induced fibrillation of ß-lactoglobulin (ß-lg) in the acidic aqueous solution upon heating was investigated using various techniques, mainly thioflavin T fluorescence, atomic force microscopy, nonreducing electrophoresis, mass spectrometry, Fourier transform infrared spectroscopy, and circular dichroism spectroscopy. The results showed that fibrillation occurred with a heating time increase, but high ethanol content slowed down the process. At a low ethanol volume fraction, peptides existed after heating for 2 h, with long and straight fibrils formed after 4-6 h, while at a high ethanol volume fraction, the proteins aggregated with very few peptides appeared at the early stage of heating, and short and curved fibrils formed after heating for 8 h. Ethanol weakened the hydrophobic interactions between proteins in the aqueous solution; therefore the latter could not completely balance the electrostatic repulsion, and thus suppressing the fibrillation process. It is believed that the fibrillation of ß-lg in the acidic solution upon heating is mainly dominated by the polypeptide model; however, ethanol inhibited the hydrolysis of proteins, and the self-assembly mechanism changed to the monomer model.


Assuntos
Lactoglobulinas , Água , Solventes/química , Lactoglobulinas/química , Peptídeos , Etanol , Espectroscopia de Infravermelho com Transformada de Fourier , Microscopia de Força Atômica , Dicroísmo Circular
13.
ACS Appl Bio Mater ; 7(4): 2511-2518, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38512069

RESUMO

High-fidelity patterning of DNA origami nanostructures on various interfaces holds great potential for nanoelectronics and nanophotonics. However, distortion of a DNA origami often occurs due to the strong interface interactions, e.g., on two-dimensional (2D) materials. In this study, we discovered that the adsorption of silica precursors in rapid silicification can prevent the distortion caused by graphene and generates a high shape-fidelity DNA origami-silica composite on a graphene interface. We found that an incubation time of 1 min and silicification time of 16 h resulted in the formation of DNA origami-silica composites with the highest shape fidelity of 99%. By comparing the distortion of the DNA origami on the graphene interface with and without silicification, we observed that rapid silicification effectively preserved the integrity of the DNA origami. Statistical analysis of scanning electron microscopy data indicates that compared to bare DNA origami, the DNA origami-silica composite has an increased shape fidelity by more than two folds. Furthermore, molecular dynamics simulations revealed that rapid silicification effectively suppresses the distortion of the DNA origami through the interhelical insertion of silica precursors. Our strategy provides a simple yet effective solution to maintain the shape-fidelity DNA origami on interfaces that have strong interaction with DNA molecules, expanding the applicable interfaces for patterning 2D DNA origamis.


Assuntos
Grafite , Nanoestruturas , Microscopia de Força Atômica , Grafite/química , Nanoestruturas/química , DNA/química , Dióxido de Silício/química
14.
J Pharm Biomed Anal ; 243: 116107, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489959

RESUMO

Hepatocellular carcinoma (HCC) is a highly prevalent cancer with a significant impact on human health. Curcumin, a natural compound, induces cytoskeletal changes in liver cancer cells and modifies the distribution of lipids, proteins, and polysaccharides on plasma membranes, affecting their mechanical and electrical properties. In this study, we used nanomechanical indentation techniques and Kelvin probe force microscopy (KPFM) based on atomic force microscopy (AFM) to investigate the changes in surface nanomechanical and electrical properties of nuclear and cytoplasmic regions of HepG2 cells in response to increasing curcumin concentrations. CCK-8 assays and flow cytometry results demonstrated time- and concentration-dependent inhibition of HepG2 cell proliferation by curcumin. Increasing curcumin concentration led to an initial increase and then decrease in the mechanical properties of nuclear and cytoplasmic regions of HepG2 cells, represented by the Young's modulus (E), as observed through nanoindentation. KPFM measurements indicated decreasing trends in both cell surface potential and height. Fluorescence microscopy results indicated a positive correlation between curcumin concentration and phosphatidylserine translocation from the inner to the outer membrane, which influenced the electrical properties of HepG2 cells. This study provides valuable insights into curcumin's mechanisms against cancer cells and aids nanoscale evaluation of therapeutic efficacy and drug screening.


Assuntos
Carcinoma Hepatocelular , Curcumina , Neoplasias Hepáticas , Humanos , Microscopia de Força Atômica/métodos , Curcumina/farmacologia , Células Hep G2 , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico
15.
Phys Rev E ; 109(2-1): 024402, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491620

RESUMO

A minimal coarse-grained model for T=1 viral capsids assembled from 20 protein rigid trimers has been designed by extending a previously proposed form of the interaction energy written as a sum of anisotropic pairwise interactions between the trimeric capsomers. The extension of the model has been performed to properly account for the coupling between two internal coordinates: the one that measures the intercapsomer distance and the other that gives the intercapsomer dihedral angle. The model has been able to fit with less than a 10% error the atomic force microscopy (AFM) indentation experimental data for the empty capsid of the minute virus of mice (MVM), providing in this way an admissible picture of the main mechanisms behind the capsid deformations. In this scenario, the bending of the intercapsomer dihedral angle is the angular internal coordinate that can support larger deformations away from its equilibrium values, determining important features of the AFM indentation experiments as the elastic constants along the three symmetry axes of the capsid and the critical indentations. From the value of one of the parameters of our model, we conclude that trimers in the MVM must be quite oblate tops, in excellent agreement with their known structure. The transition from the linear to the nonlinear regimes sampled in the indentation process appears to be an interesting topic for future research in physical virology.


Assuntos
Vírus Miúdo do Camundongo , Vírus , Animais , Camundongos , Capsídeo/química , Proteínas do Capsídeo/química , Microscopia de Força Atômica
16.
Analyst ; 149(7): 2122-2130, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38436119

RESUMO

Sensitive mapping of drugs and drug delivery systems is pivotal for the understanding and improvement of treatment options. Since labeling alters the physicochemical and potentially the pharmacological properties of the molecule of interest, its label-free detection by photothermal expansion is investigated. We report on a proof-of-concept study to map the cetuximab distribution by atomic-force microscopy-based infrared spectroscopy (AFM-IR). The monoclonal antibody cetuximab was applied to a human tumor oral mucosa model, consisting of a tumor epithelium on a lamina propria equivalent. Hyperspectral imaging in the wavenumber regime between 903 cm-1 and 1312 cm-1 and a probing distance between the data points down to 10 × 10 nm are used for determining the local drug distribution. The local distinction of cetuximab from the tissue background is gained by linear combination modeling making use of reference spectra of the drug and untreated models. The results from this approach are compared to principal component analyses, yielding comparable results. Even single molecule detection appears feasible. The results indicate that cetuximab penetrates the cytosol of tumor cells but does not bind to structures in the cell membrane. In conclusion, AFM-IR mapping of cetuximab proved to sensitively determine drug concentrations at an unprecedented spatial resolution without the need for drug labeling.


Assuntos
Mucosa Bucal , Neoplasias , Humanos , Cetuximab , Microscopia de Força Atômica/métodos , Anticorpos Monoclonais , Análise Espectral , Espectrofotometria Infravermelho/métodos
17.
STAR Protoc ; 5(1): 102873, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38427566

RESUMO

Here, we present a protocol to deliver nanoliter volumes of Toll-like receptor (TLR) agonist onto a culture of nuclear factor κB (NF-κB) reporter macrophages using fluidic force microscopy and a micron-scale probe. We describe steps for quantifying the dose of agonist by modeling their diffusion with experimental inputs. We then detail procedures for quantifying and categorizing macrophage responses to individual and varied doses and combining agonist concentration and macrophage response to analyze the NF-κB response to localized TLR stimulation. For complete details on the use and execution of this protocol, please refer to Mulder et al. (2024).1.


Assuntos
NF-kappa B , Receptores Toll-Like , NF-kappa B/fisiologia , Microscopia de Força Atômica , Receptor 4 Toll-Like , Macrófagos
18.
Langmuir ; 40(11): 5651-5662, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38437623

RESUMO

Deviations from the normal physicochemical and functional properties of pulmonary surfactants are associated with the incidence of lung injury and other respiratory disorders. This study aims to evaluate the alteration of the 2D molecular organization and morphology of pulmonary surfactant model membranes by the electronic cigarette additives α-tocopherol (vitamin E) and α-tocopherol acetate (vitamin E acetate), which have been associated with lung injury, termed e-cigarette or vaping-use-associated lung injury (EVALI). The model membranes used contained a 7:3 molar ratio of DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) and POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol) to which α-tocopherol and α-tocopherol acetate were added to form mixtures of up to 20 mol % additive. The properties of the neat tocopherol additives and DPPC/POPG (7:3) mixtures with increasing molar proportions of additive were evaluated by surface pressure-area isotherms, excess area calculations, Brewster angle microscopy, grazing incidence X-ray diffraction, X-ray reflectivity, and atomic force microscopy. The addition of either additive alters the essential phase balance of the model pulmonary surfactant membrane by generating a greater proportion of the fluid phase. Despite this net fluidization, both tocopherol additives have space-filling effects on the liquid-expanded and condensed phases, yielding negative excess areas in the liquid-expanded phase and reduced tilt angles in the condensed phase. Both tocopherol additives alter the stability of the fluid phase, pushing the eventual collapse of this phase to higher surface pressures than the model membrane in the absence of an additive.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Lesão Pulmonar , Surfactantes Pulmonares , Vaping , Humanos , alfa-Tocoferol/química , Vitamina E , Surfactantes Pulmonares/química , Microscopia de Força Atômica , Pulmão , Tensoativos , Acetatos
19.
Phys Chem Chem Phys ; 26(15): 11263-11270, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38477533

RESUMO

Atomic force microscopy (AFM or SPM) imaging is one of the best matches with machine learning (ML) analysis among microscopy techniques. The digital format of AFM images allows for direct utilization in ML algorithms without the need for additional processing. Additionally, AFM enables the simultaneous imaging of distributions of over a dozen different physicochemical properties of sample surfaces, a process known as multidimensional imaging. While this wealth of information can be challenging to analyze using traditional methods, ML provides a seamless approach to this task. However, the relatively slow speed of AFM imaging poses a challenge in applying deep learning methods broadly used in image recognition. This prospective is focused on ML recognition/classification when using a relatively small number of AFM images, aka small database. We discuss ML methods other than popular deep-learning neural networks. The described approach has already been successfully used to analyze and classify the surfaces of biological cells. It can be applied to recognize medical images, specific material processing, in forensic studies, even to identify the authenticity of arts. A general template for ML analysis specific to AFM is suggested, with a specific example of the identification of cell phenotype. Special attention is given to the analysis of the statistical significance of the obtained results, an important feature that is often overlooked in papers dealing with machine learning. A simple method for finding statistical significance is also described.


Assuntos
Algoritmos , Redes Neurais de Computação , Microscopia de Força Atômica/métodos , Estudos Prospectivos , Aprendizado de Máquina
20.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474280

RESUMO

Over the past decade, long non-coding RNAs (lncRNAs) have been recognized as key players in gene regulation, influencing genome organization and expression. The locus-specific binding of these non-coding RNAs (ncRNAs) to DNA involves either a non-covalent interaction with DNA-bound proteins or a direct sequence-specific interaction through the formation of RNA:DNA triplexes. In an effort to develop a novel strategy for characterizing a triple-helix formation, we employed atomic force microscopy (AFM) to visualize and study a regulatory RNA:DNA triplex formed between the Khps1 lncRNA and the enhancer of the proto-oncogene SPHK1. The analysis demonstrates the successful formation of RNA:DNA triplexes under various conditions of pH and temperature, indicating the effectiveness of the AFM strategy. Despite challenges in discriminating between the triple-helix and R-loop configurations, this approach opens new perspectives for investigating the role of lncRNAs in gene regulation at the single-molecule level.


Assuntos
RNA Longo não Codificante , Sequência de Bases , Microscopia de Força Atômica , RNA Longo não Codificante/genética , Conformação de Ácido Nucleico , DNA/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...